Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cloud-based control is prevalent in many modern control applications. Such applications require security for the sake of data secrecy and system safety. The presented research proposes an encrypted adaptive control framework that can be secured for cloud computing with encryption and without issues caused by encryption overflow and large execution delays. This objective is accomplished by implementing a somewhat homomorphic encryption (SHE) scheme on a modified model reference adaptive controller with accompanying encryption parameter tuning rules. Additionally, this paper proposes a virtual false data injection attack (FDIA) trap based on the SHE scheme. The trap guarantees a probability of attack detection by the adjustment of encryption parameters, thus protecting the system from malicious third parties. The formulated algorithm is then simulated, verifying that after tuning encryption parameters, the encrypted controller produces desired plant outputs while guaranteeing detection or compensation of FDIAs. With the utilization of this novel control framework, adaptively controlled systems will maintain data confidentiality and integrity against malicious adversaries.more » « lessFree, publicly-accessible full text available March 3, 2026
-
Networkedcontrol systems are vulnerable to manipulation via data injection to observed states and control commands, resulting in undesired state trajectories and system instabilities. Adversarial attacks against such systems can be implemented in the form of undetectable attacks such that an observer never notices deviations from expected behavior. Even when protected by homomorphic encryption, these systems remain vulnerable to stealthy and perfectly undetectable attacks due to the malleability of encrypted data. This research develops a defense architecture against such undetectable attacks through the fusion of two complementary detection protocols working in conjunction with encryption. The mechanism’s strengths and weaknesses are analyzed for affine transformation-based perfectly undetectable attacks and covert attacks. The attacks are implemented against a mobile robot, and defense performance is analyzed, resulting in a robust defense mechanism that outperforms previous undetectable attack detection methods in terms of detection accuracy and reliability across the two representative attack types.more » « lessFree, publicly-accessible full text available June 18, 2026
An official website of the United States government
